Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Immunohorizons ; 5(10): 855-869, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702762

ABSTRACT

Type 1 diabetes is a chronic autoimmune disease, characterized by the immune-mediated destruction of insulin-producing ß cells of pancreatic islets. Essential components of the innate immune antiviral response, including type I IFN and IFN receptor (IFNAR)-mediated signaling pathways, likely contribute to human type 1 diabetes susceptibility. We previously showed that LEW.1WR1 Ifnar1 -/- rats have a significant reduction in diabetes frequency following Kilham rat virus (KRV) infection. To delineate the impact of IFNAR loss on immune cell populations in KRV-induced diabetes, we performed flow cytometric analysis in spleens from LEW.1WR1 wild-type (WT) and Ifnar1 -/- rats after viral infection but before the onset of insulitis and diabetes. We found a relative decrease in CD8+ T cells and NK cells in KRV-infected LEW.1WR1 Ifnar1 -/- rats compared with KRV-infected WT rats; splenic regulatory T cells were diminished in WT but not Ifnar1 -/- rats. In contrast, splenic neutrophils were increased in KRV-infected Ifnar1 -/- rats compared with KRV-infected WT rats. Transcriptional analysis of splenic cells from KRV-infected rats confirmed a reduction in IFN-stimulated genes in Ifnar1 -/- compared with WT rats and revealed an increase in transcripts related to neutrophil chemotaxis and MHC class II. Single-cell RNA sequencing confirmed that MHC class II transcripts are increased in monocytes and macrophages and that numerous types of splenic cells harbor KRV. Collectively, these findings identify dynamic shifts in innate and adaptive immune cells following IFNAR disruption in a rat model of autoimmune diabetes, providing insights toward the role of type I IFNs in autoimmunity.


Subject(s)
Autoimmunity/genetics , Diabetes Mellitus, Type 1/immunology , Interferon Type I/metabolism , Parvoviridae Infections/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Chemotaxis/immunology , Diabetes Mellitus, Type 1/blood , Disease Models, Animal , Female , Gene Expression Regulation/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Neutrophils/immunology , Neutrophils/metabolism , Parvoviridae Infections/blood , Parvoviridae Infections/virology , Parvovirus/immunology , RNA-Seq , Rats , Rats, Transgenic , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism
2.
Front Immunol ; 12: 702506, 2021.
Article in English | MEDLINE | ID: mdl-34421908

ABSTRACT

Type 1 diabetes (T1D) is a proinflammatory pathology that leads to the specific destruction of insulin producing ß-cells and hyperglycaemia. Much of the knowledge about type 1 diabetes (T1D) has focused on mechanisms of disease progression such as adaptive immune cells and the cytokines that control their function, whereas mechanisms linked with the initiation of the disease remain unknown. It has been hypothesized that in addition to genetics, environmental factors play a pivotal role in triggering ß-cell autoimmunity. The BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rats have been used to decipher the mechanisms that lead to virus-induced T1D. Both animals develop ß-cell inflammation and hyperglycemia upon infection with the parvovirus Kilham Rat Virus (KRV). Our earlier in vitro and in vivo studies indicated that KRV-induced innate immune upregulation early in the disease course plays a causal role in triggering ß-cell inflammation and destruction. Furthermore, we recently found for the first time that infection with KRV induces inflammation in visceral adipose tissue (VAT) detectable as early as day 1 post-infection prior to insulitis and hyperglycemia. The proinflammatory response in VAT is associated with macrophage recruitment, proinflammatory cytokine and chemokine upregulation, endoplasmic reticulum (ER) and oxidative stress responses, apoptosis, and downregulation of adipokines and molecules that mediate insulin signaling. Downregulation of inflammation suppresses VAT inflammation and T1D development. These observations are strikingly reminiscent of data from obesity and type 2 diabetes (T2D) in which VAT inflammation is believed to play a causal role in disease mechanisms. We propose that VAT inflammation and dysfunction may be linked with the mechanism of T1D progression.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/virology , Intra-Abdominal Fat/immunology , Intra-Abdominal Fat/virology , Parvoviridae Infections/immunology , Animals , Humans , Parvovirus/immunology , Rats
3.
Viral Immunol ; 34(1): 3-17, 2021.
Article in English | MEDLINE | ID: mdl-32315582

ABSTRACT

The parvoviruses are small nonenveloped single stranded DNA viruses that constitute members that range from apathogenic to pathogenic in humans and animals. The infection with a parvovirus results in the generation of antibodies against the viral capsid by the host immune system to eliminate the virus and to prevent re-infection. For members currently either being developed as delivery vectors for gene therapy applications or as oncolytic biologics for tumor therapy, efforts are aimed at combating the detrimental effects of pre-existing or post-treatment antibodies that can eliminate therapeutic benefits. Therefore, understanding antigenic epitopes of parvoviruses can provide crucial information for the development of vaccination applications and engineering novel capsids able to escape antibody recognition. This review aims to capture the information for the binding regions of ∼30 capsid-antibody complex structures of different parvovirus capsids determined to date by cryo-electron microscopy and three-dimensional image reconstruction. The comparison of all complex structures revealed the conservation of antigenic regions among parvoviruses from different genera despite low sequence identity and indicates that the available data can be used across the family for vaccine development and capsid engineering.


Subject(s)
Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Capsid Proteins , Capsid/chemistry , Capsid/immunology , Epitopes , Parvovirus/chemistry , Parvovirus/immunology , Animals , Capsid Proteins/chemistry , Capsid Proteins/immunology , Cryoelectron Microscopy , Epitopes/chemistry , Epitopes/immunology , Humans , Parvovirus/classification , Vaccine Development
4.
Virus Res ; 292: 198236, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33242523

ABSTRACT

Human parvovirus 4 (PARV4) is a novel tetraparvovirus that was isolated from intravenous drug users in 2005. Recombinant PARV4 capsid protein VP2 can form stable virus-like particles (VLPs) in yeast. These VLPs could act as antigen carriers during vaccine development. Therefore, the information about PARV4 VP2 VLP antigenic sites could advance further research in this area. In this work, human parvovirus 4 VLPs obtained from yeast were used to generate monoclonal antibodies (mAbs) in mice. Epitope mapping of the obtained mAbs showed at least three distinct antigenic sites of the VP2 protein. On top of that, molecular cloning was used to replace PARV4 VP2 antigenic sites with heterologous peptides. The chimeric PARV4 VLPs bearing polyhistidine inserts obtained from yeast were observed using electron microscopy while polyhistidine-specific antibodies detected heterologous peptides of the chimeric VP2 proteins.


Subject(s)
Parvoviridae Infections/virology , Parvovirus/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Antibodies, Viral/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Female , Gene Expression , Humans , Mice , Mice, Inbred BALB C , Parvoviridae Infections/immunology , Parvovirus/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Vaccines, Virus-Like Particle/genetics
5.
Vet Microbiol ; 252: 108949, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33338948

ABSTRACT

Bovine viral diarrhea viruses (BVDV) are significant pathogens of cattle, leading to losses associated with reproductive failure, respiratory disease and immune dysregulation. While cattle are the reservoir for BVDV, a wide range of domestic and wild ruminants are susceptible to infection and disease caused by BVDV. Samples from four American bison (Bison bison) from a captive herd were submitted for diagnostic testing due to their general unthriftiness. Metagenomic sequencing on pooled nasal swabs and serum identified co-infection with a BVDV and a bovine bosavirus. The BVDV genome was more similar to the vaccine strain Oregon C24 V than to other BVDV sequences in GenBank, with 92.7 % nucleotide identity in the open reading frame. The conserved 5'-untranslated region was 96.3 % identical to Oregon C24 V. Bosavirus has been previously identified in pooled fetal bovine serum but its clinical significance is unknown. Sequencing results were confirmed by virus isolation and PCR detection of both viruses in serum and nasal swab samples from two of the four bison. One animal was co-infected with both BVDV and bosavirus while separate individuals were positive solely for BVDV or bosavirus. Serum and nasal swabs from these same animals collected 51 days later remained positive for BVDV and bosavirus. These results suggest that both viruses can persistently infect bison. While the etiological significance of bosavirus infection is unknown, the ability of BVDV to persistently infect bison has implications for BVDV control and eradication programs. Possible synergy between BVDV and bosavirus persistent infection warrants further study.


Subject(s)
Antibodies, Viral/blood , Bovine Virus Diarrhea-Mucosal Disease/virology , Diarrhea Viruses, Bovine Viral/immunology , Parvoviridae Infections/veterinary , Parvovirus/immunology , Animals , Bison , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Cattle , Coinfection/veterinary , Diarrhea Viruses, Bovine Viral/isolation & purification , Parvoviridae Infections/microbiology , Parvovirus/isolation & purification , Polymerase Chain Reaction/veterinary , United States/epidemiology
6.
J Appl Microbiol ; 131(1): 499-512, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33325600

ABSTRACT

AIMS: To develop a protocol for environmental sampling to detect parvoviruses of dogs and cats in the environment. METHODS AND RESULTS: Environmental contamination was carried out using different dilutions of parvovirus-contaminated materials; further field samplings were performed in areas in which clinical cases of parvovirus infections were present. Sterile cotton swabs and sponges for microbial surface sampling were used. Viruses were detected in these samples with different methods: conventional PCR, nested PCR and real-time PCR, detecting viral DNA; virus isolation, detecting infectious virus; and a commercial rapid enzyme immunoassay, detecting viral antigen. No substantial differences were observed in the two sampling methods, although the sponge was more convenient for sampling rough surfaces. Molecular assays were the most sensitive methods, identifying even very low amounts of viral DNA (up to 10 copies of viral DNA/10 µl of sample). Virus isolation and the rapid test detected the viruses only at the highest viral concentrations, both in the experimental setting and field conditions. CONCLUSIONS: Environmental sampling and molecular protocols were effective in detecting environmental contamination with parvoviruses. SIGNIFICANCE AND IMPACT OF THE STUDY: The protocol will be useful to identify possible sources of infection and to assess the efficacy of disinfection protocols in the environment.


Subject(s)
Cat Diseases/virology , Dog Diseases/virology , Environmental Microbiology , Parvoviridae Infections/veterinary , Parvovirus/isolation & purification , Animals , Antigens, Viral/immunology , Cats , DNA, Viral/genetics , Dogs , Enzyme-Linked Immunosorbent Assay , Parvoviridae Infections/virology , Parvovirus/genetics , Parvovirus/immunology , Polymerase Chain Reaction
7.
Methods Mol Biol ; 2128: 107-114, 2020.
Article in English | MEDLINE | ID: mdl-32180189

ABSTRACT

Studies performed in humans and animal models have implicated the environment in the etiology of type 1 diabetes (T1D), but the nature and timing of the interactions triggering ß cell autoimmunity are poorly understood. Virus infections have been postulated to be involved in disease mechanisms, but the underlying mechanisms are not known. It is exceedingly difficult to establish a cause-and-effect relationship between viral infection and diabetes in humans. Thus, we have used the BioBreeding Diabetes-Resistant (BBDR) and the LEW1.WR1 rat models of virus-induced disease to elucidate how virus infection leads to T1D. The immunophenotype of these strains is normal, and spontaneous diabetes does not occur in a specific pathogen-free environment. However, ß cell inflammation and diabetes with many similarities to the human disease are induced by infection with the parvovirus Kilham rat virus (KRV). KRV-induced diabetes in the BBDR and LEW1.WR1 rat models is limited to young animals and can be induced in both male and female rats. Thus, these animals provide a powerful experimental tool to identify mechanisms underlying virus-induced T1D development.


Subject(s)
Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/virology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/virology , Parvoviridae Infections/complications , Parvovirus/immunology , Animals , Blood Glucose/analysis , Cell Culture Techniques , Cell Line , Diabetes Mellitus, Experimental/diagnosis , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/etiology , Female , Glycosuria , Inflammation/immunology , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/virology , Male , Rats , Rats, Inbred BB , Rats, Inbred Lew , Rats, Inbred WF
8.
Microb Pathog ; 138: 103816, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31655218

ABSTRACT

Duckling short beak and dwarfism syndrome virus (SBDSV), a newly identified goose parvovirus, causes devastating disease in domestic waterfowl and considerable economic losses to Chinese waterfowl industry. The molecular pathogenesis of SBDSV infection, nature and dynamics of host immune responses against SBDSV infection remained elusive. In this study, we systematically explored the relative mRNA expression profiles of major innate immune-related genes in SBDSV infected duck embryo fibroblasts. We found that SBDSV infection effectively activated host innate immune responses and resulted in significant up-regulation of IFN-ß and several vital IFN-stimulated genes (ISGs). These up-regulation responses were mainly attributed to viral genomic DNA and dsRNA replication intermediates. Importantly, the expression of cGAS was significantly induced, whereas the expression of other DNA receptors including DDX41, STING, ZBP1, LSM14A and LRRFIP1 have no significant change. Furthermore, SBDSV infection also activates the up-regulation of TLR3 and inhibited the expression of TLR2 and TLR4; however, no effect was observed on the expression of TLR1, TLR5, TLR7, TLR15 and TLR21. Intriguingly, SBDSV infection significantly up-regulated the expression of RNA sensors such as MDA5 and LGP2, and resulted in a delayed but significant up-regulation of RIG-I gene. Taken together, these data indicate that host multiple sensors including DNA sensor (cGAS) and RNA sensors (TLR3, MDA5 and LGP2) are involved in recognizing a variety of different pathogen associated molecular patterns (PAMPs) including viral genomic ssDNA and dsRNA replication intermediates, which trigger an effective antiviral innate immune response.


Subject(s)
Bird Diseases/immunology , Bird Diseases/virology , Host-Pathogen Interactions/immunology , Immunity, Innate , Parvoviridae Infections/veterinary , Parvovirus/immunology , Animals , Biomarkers , Bird Diseases/metabolism , Cell Line , Cells, Cultured , DNA, Viral/immunology , Interferon Regulatory Factors/metabolism , RNA, Viral/immunology , Receptors, Pattern Recognition/metabolism , Virus Replication
9.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31748386

ABSTRACT

Parvoviruses are an important platform for gene and cancer therapy. Their cell entry and the following steps, including nuclear import, are inefficient, limiting their use in therapeutic applications. Two models exist on parvoviral nuclear entry: the classical import of the viral capsid using nuclear transport receptors of the importin (karyopherin) family or the direct attachment of the capsid to the nuclear pore complex leading to the local disintegration of the nuclear envelope. Here, by laser scanning confocal microscopy and in situ proximity ligation analyses combined with coimmunoprecipitation, we show that infection requires importin ß-mediated access to the nuclear pore complex and nucleoporin 153-mediated interactions on the nuclear side. The importin ß-capsid interaction continued within the nucleoplasm, which suggests a mixed model of nuclear entry in which the classical nuclear import across the nuclear pore complex is accompanied by transient ruptures of the nuclear envelope, also allowing the passive entry of importin ß-capsid complexes into the nucleus.IMPORTANCE Parvoviruses are small DNA viruses that deliver their DNA into the postmitotic nuclei, which is an important step for parvoviral gene and cancer therapies. Limitations in virus-receptor interactions or endocytic entry do not fully explain the low transduction/infection efficiency, indicating a bottleneck after virus entry into the cytoplasm. We thus investigated the transfer of parvovirus capsids from the cytoplasm to the nucleus, showing that the nuclear import of the parvovirus capsid follows a unique strategy, which differs from classical nuclear import and those of other viruses.


Subject(s)
Parvoviridae Infections/metabolism , Parvovirus/metabolism , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Animals , Capsid/metabolism , Capsid Proteins/genetics , Cell Line , Cell Nucleus/virology , Cytoplasm/metabolism , Cytosol/metabolism , Karyopherins/metabolism , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Parvovirus/immunology , Virus Internalization , Virus Replication , alpha Karyopherins/metabolism
10.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30996096

ABSTRACT

Carnivore parvoviruses infect wild and domestic carnivores, and cross-species transmission is believed to occur. However, viral dynamics are not well understood, nor are the consequences for wild carnivore populations of the introduction of new strains into wild ecosystems. To clarify the ecology of these viruses in a multihost system such as the Serengeti ecosystem and identify potential threats for wildlife conservation, we analyzed, through real-time PCR, 152 samples belonging to 14 wild carnivore species and 62 samples from healthy domestic dogs. We detected parvovirus DNA in several wildlife tissues. Of the wild carnivore and domestic dog samples tested, 13% and 43%, respectively, were positive for carnivore parvovirus infection, but little evidence of transmission between the wild and domestic carnivores was detected. Instead, we describe two different epidemiological scenarios with separate routes of transmission: first, an endemic feline parvovirus (FPV) route of transmission maintained by wild carnivores inside the Serengeti National Park (SNP) and, second, a canine parvovirus (CPV) route of transmission among domestic dogs living around the periphery of the SNP. Twelve FPV sequences were characterized; new host-virus associations involving wild dogs, jackals, and hyenas were discovered; and our results suggest that mutations in the fragment of the vp2 gene were not required for infection of different carnivore species. In domestic dogs, 6 sequences belonged to the CPV-2a strain, while 11 belonged to the CPV-2 vaccine-derived strain. This is the first description of a vaccine-derived parvovirus strain being transmitted naturally.IMPORTANCE Carnivore parvoviruses are widespread among wild and domestic carnivores, which are vulnerable to severe disease under certain circumstances. This study furthers the understanding of carnivore parvovirus epidemiology, suggesting that feline parvoviruses are endemic in wild carnivores in the Serengeti National Park (SNP), with new host species identified, and that canine parvoviruses are present in the dog population living around the SNP. Little evidence of transmission of canine parvoviruses into wild carnivore species was found; however, the detection of vaccine-derived virus (described here for the first time to be circulating naturally in domestic dogs) highlights the importance of performing epidemiological research in the region.


Subject(s)
Ecology , Ecosystem , Host Specificity , Parvoviridae Infections/virology , Parvovirus/physiology , Vaccines , Animals , Animals, Wild , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cats , Dogs , Feline Panleukopenia Virus/genetics , Feline Panleukopenia Virus/physiology , Molecular Epidemiology , Mutation , Parvovirus/genetics , Parvovirus/immunology , Parvovirus, Canine/genetics , Parvovirus, Canine/physiology , Phylogeny , Sequence Analysis , Tanzania
11.
Emerg Microbes Infect ; 8(1): 130-138, 2019.
Article in English | MEDLINE | ID: mdl-30866767

ABSTRACT

Seasonal outbreaks of acute encephalitis syndrome (AES) at Gorakhpur, India have been recognized since 2006. So far, the causative agent has not been identified. Use of next generation sequencing identified human parvovirus 4 (HPARV4) sequences in a CSF/plasma pool. These sequences showed highest identity with sequences earlier identified in similar patients from south India. Real-time PCR detected HPARV4 DNA in 20/78 (25.6%) CSF and 6/31 (19.3%) plasma of AES patients. Phylogenetic analysis classified three almost complete genomes and 24 partial NS1 sequences as genotype 2A. The observed association of HPARV4 with AES needs further evaluation. ELISAs for the detection of IgM and IgG antibodies against scrub typhus (Orientia tsutsugamushi, OT) showed ∼70% IgM/IgG positivity suggestive of etiologic association. Prospective, comprehensive studies are needed to confirm association of these agents, singly or in combination with AES in Gorakhpur region.


Subject(s)
Acute Febrile Encephalopathy/virology , Disease Outbreaks , Parvoviridae Infections/epidemiology , Parvovirus/isolation & purification , Sequence Analysis, DNA/methods , Acute Febrile Encephalopathy/blood , Acute Febrile Encephalopathy/cerebrospinal fluid , Acute Febrile Encephalopathy/epidemiology , Child , Child, Preschool , DNA, Viral/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , India/epidemiology , Infant , Male , Parvoviridae Infections/blood , Parvoviridae Infections/cerebrospinal fluid , Parvoviridae Infections/diagnosis , Parvovirus/genetics , Parvovirus/immunology , Phylogeny
12.
J Appl Microbiol ; 126(1): 49-57, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30288879

ABSTRACT

AIMS: To evaluate the effect of a DNA priming and protein boosting immunization scheme in ducks. METHODS AND RESULTS: Pekin ducks were immunized with pTCY/VP2 DNA vaccine; on day 14 (D14) after primary immunization, the ducks were boosted with either the same vaccine (DNA + DNA) or the rVP2 vaccine (DNA + rVP2). CpG oligodeoxynucleotides containing three copies of GACGTT motifs were used as the adjuvant in the vaccines. Compared with unimmunized controls, both immunization schemes significantly increased the titre of antigen-specific antibodies, lymphocyte proliferation index, percentage of CD4+ and CD8+ cells in peripheral blood mononuclear cells (PBMCs) and mRNA expression of interferon (IFN)-α, IFN-γ, interleukin (IL)-6 and IL-12 in antigen-stimulated PBMCs. Furthermore, compared with the DNA + DNA homologous scheme, the DNA + rVP2 heterologous scheme significantly increased lymphocyte proliferation, percentage of CD4+ and CD8+ cells in PBMCs and upregulation of mRNA expression of cytokines 2 weeks after the boost (D28). CONCLUSIONS: The DNA + rVP2 immunization scheme enhanced immune responses, mainly Th1 type, against parvovirus in ducks. SIGNIFICANCE AND IMPACT OF THE STUDY: The DNA priming and protein boosting heterologous immunization strategy can be applied to develop vaccines against viral infections in ducks. It can potentially be used in breeding ducks because of long-term immunity may confer protection for ducklings.


Subject(s)
Parvoviridae Infections/veterinary , Parvovirus/immunology , Poultry Diseases/prevention & control , Vaccines, DNA/administration & dosage , Viral Proteins/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Cytokines/genetics , Cytokines/immunology , Ducks , Immunization , Immunization, Secondary , Leukocytes, Mononuclear/immunology , Parvoviridae Infections/immunology , Parvoviridae Infections/prevention & control , Parvoviridae Infections/virology , Parvovirus/genetics , Poultry Diseases/genetics , Poultry Diseases/immunology , Poultry Diseases/virology , Th1 Cells/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Viral Proteins/genetics , Viral Proteins/immunology
14.
Emerg Infect Dis ; 24(7): 1292-1299, 2018 07.
Article in English | MEDLINE | ID: mdl-29912685

ABSTRACT

Development of next-generation sequencing and metagenomics has revolutionized detection of novel viruses. Among these viruses are 3 human protoparvoviruses: bufavirus, tusavirus, and cutavirus. These viruses have been detected in feces of children with diarrhea. In addition, cutavirus has been detected in skin biopsy specimens of cutaneous T-cell lymphoma patients in France and in 1 melanoma patient in Denmark. We studied seroprevalences of IgG against bufavirus, tusavirus, and cutavirus in various populations (n = 840), and found a striking geographic difference in prevalence of bufavirus IgG. Although prevalence was low in adult populations in Finland (1.9%) and the United States (3.6%), bufavirus IgG was highly prevalent in populations in Iraq (84.8%), Iran (56.1%), and Kenya (72.3%). Conversely, cutavirus IgG showed evenly low prevalences (0%-5.6%) in all cohorts, and tusavirus IgG was not detected. These results provide new insights on the global distribution and endemic areas of protoparvoviruses.


Subject(s)
Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Parvovirus , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Viral/immunology , Cross Reactions/immunology , Female , Global Health , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Parvoviridae Infections/immunology , Parvovirus/classification , Parvovirus/genetics , Parvovirus/immunology , Population Surveillance , Young Adult
15.
J Endocrinol ; 238(1): 61-75, 2018 07.
Article in English | MEDLINE | ID: mdl-29743341

ABSTRACT

The etiopathogenesis of type 1 diabetes (T1D) remains poorly understood. We used the LEW1.WR1 rat model of Kilham rat virus (KRV)-induced T1D to better understand the role of the innate immune system in the mechanism of virus-induced disease. We observed that infection with KRV results in cell influx into visceral adipose tissue soon following infection prior to insulitis and hyperglycemia. In sharp contrast, subcutaneous adipose tissue is free of cellular infiltration, whereas ß cell inflammation and diabetes are observed beginning on day 14 post infection. Immunofluorescence studies further demonstrate that KRV triggers CD68+ macrophage recruitment and the expression of KRV transcripts and proinflammatory cytokines and chemokines in visceral adipose tissue. Adipocytes from naive rats cultured in the presence of KRV express virus transcripts and upregulate cytokine and chemokine gene expression. KRV induces apoptosis in visceral adipose tissue in vivo, which is reflected by positive TUNEL staining and the expression of cleaved caspase-3. Moreover, KRV leads to an oxidative stress response and downregulates the expression of adipokines and genes associated with mediating insulin signaling. Activation of innate immunity with Poly I:C in the absence of KRV leads to CD68+ macrophage recruitment to visceral adipose tissue and a decrease in adipokine expression detected 5 days following Poly (I:C) treatment. Finally, proof-of-principle studies show that brief anti-inflammatory steroid therapy suppresses visceral adipose tissue inflammation and protects from virus-induced disease. Our studies provide evidence raising the hypothesis that visceral adipose tissue inflammation and dysfunction may be involved in early mechanisms triggering ß cell autoimmunity.


Subject(s)
Adipose Tissue/pathology , Adipose Tissue/physiopathology , Diabetes Mellitus, Type 1/virology , Inflammation/complications , Panniculitis/complications , Parvovirus/physiology , Adipose Tissue/immunology , Adipose Tissue/virology , Animals , Cells, Cultured , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/physiopathology , Female , Immunity, Innate/physiology , Inflammation/pathology , Inflammation/virology , Macrophages/physiology , Male , Panniculitis/immunology , Panniculitis/pathology , Panniculitis/virology , Parvovirus/immunology , Rats , Signal Transduction/immunology
16.
J Virol ; 92(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29695427

ABSTRACT

Antibody and receptor binding are key virus-host interactions that control host range and determine the success of infection. Canine and feline parvovirus capsids bind the transferrin receptor type 1 (TfR) to enter host cells, and specific structural interactions appear necessary to prepare the stable capsids for infection. Here, we define the details of binding, competition, and occupancy of wild-type and mutant parvovirus capsids with purified receptors and antibodies. TfR-capsid binding interactions depended on the TfR species and varied widely, with no direct relationship between binding affinity and infection. Capsids bound feline, raccoon, and black-backed jackal TfRs at high affinity but barely bound canine TfRs, which mediated infection efficiently. TfRs from different species also occupied capsids to different levels, with an estimated 1 to 2 feline TfRs but 12 black-backed jackal TfRs binding each capsid. Multiple alanine substitutions within loop 1 on the capsid surface reduced TfR binding but substitutions within loop 3 did not, suggesting that loop 1 directly engaged the TfR and loop 3 sterically affected that interaction. Binding and competition between different TfRs and/or antibodies showed complex relationships. Both antibodies 14 and E competed capsids off TfRs, but antibody E could also compete capsids off itself and antibody 14, likely by inducing capsid structural changes. In some cases, the initial TfR or antibody binding event affected subsequent TfR binding, suggesting that capsid structure changes occur after TfR or antibody binding and may impact infection. This shows that precise, host-specific TfR-capsid interactions, beyond simple attachment, are important for successful infection.IMPORTANCE Host receptor binding is a key step during viral infection and may control both infection and host range. In addition to binding, some viruses require specific interactions with host receptors in order to infect, and anti-capsid antibodies can potentially disrupt these interactions, leading to neutralization. Here, we examine the interactions between parvovirus capsids, the receptors from different hosts, and anti-capsid antibodies. We show that interactions between parvovirus capsids and host-specific TfRs vary in both affinity and in the numbers of receptors bound, with complex effects on infection. In addition, antibodies binding to two sites on the capsids had different effects on TfR-capsid binding. These experiments confirm that receptor and antibody binding to parvovirus capsids are complex processes, and the infection outcome is not determined simply by the affinity of attachment.


Subject(s)
Antibodies, Viral/metabolism , Capsid/metabolism , Mutation , Parvovirus/pathogenicity , Receptors, Transferrin/metabolism , Animals , Capsid/immunology , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cats , Cell Line , Dogs , Host Specificity , Humans , Jackals , Models, Molecular , Parvovirus/immunology , Raccoons , Receptors, Transferrin/chemistry
17.
J Am Vet Med Assoc ; 250(12): 1413-1418, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28569640

ABSTRACT

OBJECTIVE To determine the prevalence of dogs hospitalized in an intensive care unit (ICU) with serum antibody titers against canine distemper virus (CDV) and canine parvovirus (CPV). DESIGN Prospective observational study. ANIMALS 80 dogs. PROCEDURES Dogs hospitalized in an ICU for > 12 hours between February 1 and June 1, 2015, that had at least 0.25 mL of serum left over from diagnostic testing were eligible for study inclusion. Dogs with serum antibody titers > 1:32 (as determined by serum neutralization) and > 1:80 (as determined by hemagglutination inhibition) were considered seropositive for CDV and CPV, respectively. The date of last vaccination was obtained from the medical record of each dog. RESULTS Of the 80 dogs, 40 (50%) and 65 (81%) dogs were seropositive for CDV and CPV, respectively. Of the 40 dogs that were seronegative for CDV, 27 had been vaccinated against CDV within 3 years prior to testing. Of the 15 dogs that were seronegative for CPV, 3 had been vaccinated against CPV within 3 years prior to testing. Ten dogs were seronegative for both CDV and CPV. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated the prevalence of dogs hospitalized in an ICU that were seropositive for CDV and CPV was lower than expected given the high vaccination rate reported for dogs. Although the antibody titer necessary to prevent disease caused by CDV or CPV in critically ill dogs is unknown, adherence to infectious disease control guidelines is warranted when CDV- or CPV-infected dogs are treated in an ICU.


Subject(s)
Antibodies, Viral/blood , Distemper Virus, Canine/immunology , Distemper/prevention & control , Parvoviridae Infections/veterinary , Parvovirus/immunology , Animals , Distemper/blood , Distemper/epidemiology , Distemper/virology , Dogs , Female , Intensive Care Units/statistics & numerical data , Male , Parvoviridae Infections/epidemiology , Parvoviridae Infections/prevention & control , Prevalence , Prospective Studies , Texas/epidemiology , Vaccination/veterinary
18.
Sci Rep ; 6: 39267, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27966636

ABSTRACT

Two human parvoviruses were recently discovered by metagenomics in Africa, bufavirus (BuV) in 2012 and tusavirus (TuV) in 2014. These viruses have been studied exclusively by PCR in stool and detected only in patients with diarrhoea, although at low prevalence. Three genotypes of BuV have been identified. We detected, by in-house EIA, BuV1-3 IgG antibodies in 7/228 children (3.1%) and 10/180 adults (5.6%), whereas TuV IgG was found in one child (0.4%). All children and 91% of the adults were Finnish, yet interestingly 3/6 adults of Indian origin were BuV-IgG positive. By competition EIA, no cross-reactivity between the BuVs was detected, indicating that the BuV genotypes represent distinct serotypes. Furthermore, we analysed by BuV qPCR stool and nasal swab samples from 955 children with gastroenteritis, respiratory illness, or both, and found BuV DNA in three stools (0.3%) and for the first time in a nasal swab (0.1%). This is the first study documenting the presence of BuV and TuV antibodies in humans. Although the seroprevalences of both viruses were low in Finland, our results indicate that BuV infections might be widespread in Asia. The BuV-specific humoral immune responses appeared to be strong and long-lasting, pointing to systemic infection in humans.


Subject(s)
Antibodies, Bacterial/metabolism , Gastroenteritis/epidemiology , Parvovirus/classification , Respiratory Tract Diseases/epidemiology , Adult , Child, Preschool , Feces/microbiology , Female , Finland/epidemiology , Gastroenteritis/immunology , Gastroenteritis/microbiology , Genotype , Humans , Infant , Male , Middle Aged , Nose/microbiology , Parvovirus/genetics , Parvovirus/immunology , Parvovirus/isolation & purification , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/microbiology , Seroepidemiologic Studies , Young Adult
19.
Vet Immunol Immunopathol ; 179: 85-8, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27590430

ABSTRACT

Goose parvovirus (GPV) infection can cause a highly contagious and lethal disease in goslings and muscovy ducklings which is widespread in all major goose (Anser anser) and Muscovy duck (Cairina moschata) farming countries, leading to a huge economic loss. Humoral immune responses play a major role in GPV immune protection during GPV infection. However, it is still unknown for the localization and immunological characteristics of B-cell epitopes on GPV non-structural protein (NSP). Therefore, in this study, the epitopes on the NSP of GPV were identified by means of overlapping peptides expressed in Escherichia coli in combination with Western blot. The results showed that the antigenic epitopes on the GPV NSP were predominantly localized in the C-terminal (aa 485-627), and especially, the fragment NS (498-532) was strongly positive. These results may facilitate future investigations on the function of NSP of GPV and the development of immunoassays for the diagnosis of GPV infection.


Subject(s)
Epitopes, B-Lymphocyte/immunology , Geese/virology , Parvovirus/immunology , Viral Nonstructural Proteins/immunology , Animals , Peptide Fragments/immunology
20.
Virol J ; 13: 104, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27329377

ABSTRACT

BACKGROUND: Muscovy duck parvovirus (MDPV) is the etiological agent of Muscovy duckling parvoviral disease, which is characterized by diarrhea, locomotive dysfunction, stunting, and death in young ducklings, and causes substantial economic losses in the Muscovy duck industry worldwide. FZ91-30 is an attenuated vaccine strain that is safe and immunogenic to ducklings, but the genomic information and molecular mechanism underlining the attenuation are not understood. METHODS: The FZ91-30 strain was propagated in 11-day-old embryonated goose eggs, and viral particles were purified from the pooled allantoic fluid by differential centrifugation and ultracentrifugation. Single-stranded genomic DNA was extracted and annealed to form double-stranded DNA. The dsDNA digested with NcoI resulted two sub-genomic fragments, which were then cloned into the modified plasmid pBluescript II SK, respectively, generating plasmid pBSKNL and pBSKNR. The sub-genomic plasmid clones were sequenced and further combined to construct the plasmid pFZ that contained the entire genome of strain FZ91-30. The complete genome sequences of strain FM and YY and partial genome sequences of other strains were retrieved from GenBank for sequence comparison. The plasmid pFZ containing the entire genome of FZ91-30 was transfected in 11-day-old embryonated goose eggs via the chorioallantoic membranes route to rescue infectious virus. A genetic marker was introduced into the rescued virus to discriminate from its parental virus. RESULTS: The genome of FZ91-30 consists of 5,131 nucleotides and has 98.9 % similarity to the FM strain. The inverted terminal repeats (ITR) are 456 nucleotides in length, 14 nucleotides longer than that of Goose parvovirus (GPV). The exterior 415 nucleotides of the ITR form a hairpin structure, and the interior 41 nucleotides constitute the D sequence, a reverse complement of the D' sequence at the 3' ITR. Amino acid sequence alignment of the VP1 proteins between FZ91-30 and five pathogenic MDPV strains revealed that FZ91-30 had five mutations; two in the unique region of the VP1 protein (VP1u) and three in VP3. Sequence alignment of the Rep1 proteins revealed two amino acid alterations for FZ91-30, both of which were conserved for two pathogenic strains YY and P. Transfection of the plasmid pFZ in 11-day-old embryonated goose eggs resulted in generation of infectious virus with similar biological properties as compared with the parental strain. CONCLUSIONS: The amino acid mutations identified in the VP1 and Rep1 protein may contribute to the attenuation of FZ91-30 in Muscovy ducklings. Plasmid transfection in embryonated goose eggs was suitable for rescue of infectious MDPV.


Subject(s)
Geese/virology , Parvoviridae Infections/veterinary , Parvovirus/growth & development , Parvovirus/immunology , Poultry Diseases/virology , Amino Acid Sequence , Animals , Base Sequence , Ducks/virology , Geese/embryology , Parvoviridae Infections/embryology , Parvoviridae Infections/immunology , Parvoviridae Infections/virology , Parvovirus/genetics , Parvovirus/isolation & purification , Poultry Diseases/embryology , Poultry Diseases/immunology , Poultry Diseases/pathology , Sequence Alignment , Sequence Analysis, DNA , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...